Last updated on 2025-10-21 | Edit this page
Glossary
Cheat sheet of functions used in the lessons
Lesson 1 – Introduction to R
-
sqrt()# calculate the square root -
round()# round a number -
args()# find what arguments a function takes -
length()# how many elements are in a particular vector -
class()# the class (the type of element) of an object -
str()# an overview of the object and the elements it contains -
typeof# determines the (R internal) type or storage mode of any object -
c()# create vector; add elements to vector -
[ ]# extract and subset vector -
%in%# to test if a value is found in a vector -
is.na()# test if there are missing values -
na.omit()# Returns the object with incomplete cases removed -
complete.cases()# elements which are complete cases
Lesson 2 – Starting with Data
-
download.file()# download files from the internet to your computer -
read_csv()# load CSV file into R memory -
head()# shows the first 6 rows -
view()# invoke a spreadsheet-style data viewer -
read_delim()# load a file in table format into R memory -
str()# check structure of the object and information about the class, length and content of each column -
dim()# check dimension of data frame -
nrow()# returns the number of rows -
ncol()# returns the number of columns -
tail()# shows the last 6 rows -
names()# returns the column names (synonym of colnames() for data frame objects) -
rownames()# returns the row names -
summary()# summary statistics for each column -
glimpse# likestr()applied to a data frame but tries to show as much data as possible -
factor()# create factors -
levels()# check levels of a factor -
nlevels()# check number of levels of a factor -
as.character()# convert an object to a character vector -
as.numeric()# convert an object to a numeric vector -
as.numeric(as.character(x))# convert factors where the levels appear as characters to a numeric vector -
as.numeric(levels(x))[x]# convert factors where the levels appear as numbers to a numeric vector -
plot()# plot an object -
addNA()# convert NA into a factor level -
data.frame()# create a data.frame object -
ymd()# convert a vector representing year, month, and day to a Date vector -
paste()# concatenate vectors after converting to character
Lesson 3 – Data Wrangling with dplyr and tidyr
-
str()# check structure of the object and information about the class, length and content of each column -
view()# invoke a spreadsheet-style data viewer -
select()# select columns of a data frame -
filter()# allows you to select a subset of rows in a data frame -
%>%# pipes to select and filter at the same time -
mutate()# create new columns based on the values in existing columns -
head()# shows the first 6 rows -
group_by()# split the data into groups, apply some analysis to each group, and then combine the results. -
summarize()# collapses each group into a single-row summary of that group -
mean()# calculate the mean value of a vector -
!is.na()# test if there are no missing values -
print()# print values to the console -
min()# return the minimum value of a vector -
arrange()# arrange rows by variables -
desc()# transform a vector into a format that will be sorted in descending order -
count()# counts the total number of records for each category -
pivot_wider()# reshape a data frame by a key-value pair across multiple columns -
pivot_longer()# reshape a data frame by collapsing into a key-value pair -
replace_na()# Replace NAs with specified values -
n_distinct()# get a count of unique values -
write_csv()# save to a csv formatted file
Lesson 4 – Data Visualization with ggplot2
-
read_csv()# load a csv formatted file into R memory -
ggplot2(data= , aes(x= , y= )) + geom_point( ) + facet_wrap () + theme_bw() + theme()# skeleton for creating plot layers -
aes()# by selecting the variables to be plotted and the variables to define the presentation such as plotting size, shape color, etc. -
geom_# graphical representation of the data in the plot (points, lines, bars). To add a geom to the plot use + operator -
facet_wrap()# allows to split one plot into multiple plots based on a factor included in the dataset -
labs()# set labels to plot -
theme_bw()# set the background to white -
theme()# used to locally modify one or more theme elements in a specific ggplot object -
+# arrange ggplots horizontally -
/# arrange ggplots vertically -
plot_layout()# set width and height of individual plots in a patchwork of plots -
ggsave()# save a ggplot